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SUMMARY 
The extrudate swell phenomenon of a purely viscous fluid is analysed by solving simultaneously the Cauchy 
momentum equations along with the continuity equation by means of a finite difference method. The 
circular and planar jet flows of Newtonian and power-law fluids are simulated using a control volume finite 
difference method suggested by Patankar called SIMPLER (semi-implicit method for pressure-linked 
equations). This method uses the velocity components and pressure as the primitive variables and employs 
a staggered grid and control volume for each separate variable. The numerical results show good agreement 
with the analytical solution of the axisymmetric stick-slip problem and exhibit a Newtonian swelling ratio of 
13.2% or 19.2% for a capillary or slit die respectively in accordance with previously reported experimental 
and numerical results. Shear thinning results in a decrease in swelling ratio, as does the introduction of 
gravity and surface tension. 
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INTRODUCTION 

The flow of highly viscous fluids such as polymer melts is commonly encountered in the 
materials-processing industry and many applications are conducted in the low-Reynolds-number 
regime. Such applications include pipe and profile extrusion which is used in the production of 
rods, pipes, sheets and a wide variety of other final products. The extrusion process is not only of 
technological interest but also constitutes a challenging problem for numerical simulation owing 
to the presence of mixed boundary conditions and a stress singularity at the die exit. Once the 
fluid emerges from the die, it exhibits the characteristic phenomenon known as ‘extrudate swell’ 
or ‘jet swell’. Extrudate swell is most commonly given as the ratio of the extrudate dimension to 
the die dimension or as the change of extrudate dimension in reference to the die dimension 
expressed as a percentage. These definitions provide a quantitative measure of the swelling 
behaviour. The jet swell ratio is strongly dependent on the rheological properties of the liquid as 
well as other factors. Experimentally, the jet swell ratio has been found to be approximately 
1.1-1.2 for Newtonian fluids’-5 and to typically range from two to three for viscoelastic 
liquids.6 - * 

Theoretical analysis of the jet swell phenomenon has been attempted both analytically and 
numerically. Analytical approaches have been successfully applied to the stick-slip problem.’ - l 1  
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However, analytical investigation of the swelling phenomenon has rarely been reported” and 
will continue to remain a formidable challenge for the foreseeable future. 

Over the past 15 years numerous numerical studies of the jet swell problem have been 
undertaken and considerable progress has been realized with the steady improvement in com- 
putational hardware as well as software codes. Most of these numerical studies have employed 
finite element methods. Since the first successful numerical analysis of the creeping flow of 
a Newtonian jet by Nickel1 et al.,’’ several other analyses of the problem have been pub- 
lished.I3- 22 The creeping jet flow of a viscoelastic fluid has even been successfully analysed using 
finite element methods for fluids exhibiting weakly elastic beha~iour.’~ -28 

Reddy and Tanner23 used a second-order fluid model in order to predict the swelling of a plane 
jet, whereas Chang et ~ 2 . ~ ~  employed a non-linear Maxwell model for both axisymmetric and 
planar geometries. Tuna and Finlayson” obtained convergence for the jet swell of a convected 
Maxwell fluid up to Wissenberg numbers of 1.6 for cylindrical geometry and 1-05 for planar 
geometry using a Galerkin finite element method. Crochet and Keunings” reported calculations 
for the jet swell of a convected Maxwell fluid using a mixed finite element method. These authors 
also reported successful calculations for an Oldroyd B fluid model exhibiting high elastic 
behaviour with recoverable shear values as large as four.26 In order to achieve higher 
Weissenberg numbers, some authors such as Wesson and Papanasta~iou’~ and Phan-Thien3’ 
employed a slip boundary condition at the wall. Marchal and Crochet31 employed a mixed finite 
element technique to successfully calculate the flow of Maxwell B and Oldroyd B fluids at very 
high values of Deborah number. 

On the other hand, very few numerical studies of the jet swell phenomenon have employed 
finite difference methods. A tranditional finite difference method was first employed by H ~ r s f a l l ~ ~  
to analyse the Newtonian jet swell phenomenon. His numerical solution, however, predicted 
a swelling ratio considerably smaller than that observed experimentally, owing to inaccuracies of 
interpolation in enforcing the boundary conditions at the free surface. The only finite difference 
technique which successfully predicted the jet swell phenomenon was undertaken by Dutta and 
Ryan33 for the creeping Newtonian jet flow through axisymmetric and slit dies. They employed 
a streamfunction-vorticity formulation to eliminate the need for satisfying mass continuity and 
adopted an orthogonal curvilinear co-ordinate system to accommodate the irregular boundary. 

In the present method a finite difference formulation using a staggered grid and control volume 
approach, with velocity and pressure as the primitive variables, is employed. The irregular shape 
of the physical domain is transformed into a rectangular computational domain in order to 
facilitate discretization without difficulties arising from the changing shape of the free boundary. 
The predicted creeping jet swell of Newtonian and power-law fluids is discussed along with the 
details of the present technique. 

A schematic diagram of the extrudate swell problem is presented in Figure 1 along with the 
prescribed boundary conditions. The fluid comes in as a fully developed flow at the far upstream 
boundary, passes through the die exit and ultimately moves without any stresses far downstream. 
On the die wall the no-slip condition is applied, while on the free surface the tangential stress is 
equal to zero, the normal stress is balanced by surface tension and the no-penetration condition is 
applied. At the centreline a symmetry condition is applied. 

FORMULATION 

The governing equations that describe the motion of a fluid jet are the momentum equations 
and the continuity equation. The following assumptions are employed for this flow problem: 
(a) steady state, (b) incompressible, (c) two-dimensional or axisymmetric. The continuity and 
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Figure 1. Schematic diagram of jet swell problem with prescribed boundary conditions 

Cauchy momentum equations in normalized form are 

i a  avz  
- - ( ruvr)  + - = 0, 
ra ar a2 

The equations have been normalized using a characteristic length L (defined as the half-channel 
width or die radius), a characteristic velocity V (defined as the average flow velocity) and 
a characteristic viscosity K (  V/L)"-', where K and n are the consistency index and power-law 
index respectively. The Reynolds number and body forces are denoted as Re = pL" V 2  -"/K and 
Gi = pL"+ g i /K  V" respectively. The pressure and stress terms are normalized by K V"/L". The 
parameter M determines the co-ordinate system for the geometry of interest, i.e. a=O for 
rectangular co-ordinates associated with slit dies and a= 1 for cylindrical co-ordinates associated 
with capillary dies. For the creeping flow of a highly viscous liquid, Re 4 1 and the inertial terms 
in the momentum equation can be ignored. For this situation the creeping flow equations are 

For the generalized Newtonian fluid the constitutive equation yields 

For a power-law fluid the viscosity is related to the second scalar invariant of the rate- 
of-deformation tensor as follows: 

p= ~+nl(n- U P ,  (7) 
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where :n=2[($)2+*(4)2+(!3)2]+(-+-) aur au, 2 . 
aZ ar 

Substituting the constitutive equation into the momentum equation and rearranging gives 

where the body forces in the radial direction have been neglected. 

boundary conditions: 
The above equations are formulated in the physical domain together with the following 

(i) z=zi, O < r < l :  

(ii) z i<z<zf ,  r=O:  or = 0, (a -n) .  t =O; 

(iii) z=zf ,  O<r<Rf: (a. n) t =0, (a * n) * n = -p; 

u, = u,(r) = (a + 2)' + 1 (1 - l) /n),  ur = 0; 
n + l  

(iv) zi<z<zd, r = l :  u,=O, ur=Q 

(v) zd <z <zf, r = R(z): (a - n) t =0,  (a. n) - n =-pa- H S ,  v - n =O. (11) 

Here zi and zf denote the axial co-ordinates of the upstream and downstream boundaries 
respectively and zd is the axial co-ordinate associated with the die exit. R(z) is the location of the 
free surface as a function of axial distance z, S = aLn- ' / K V  is the surface tension parameter and 
H is the total curvature of the free surface defined by 

-d2R/dz2 U 

[l + ( d R / d ~ ) ~ ] ~ / ~ + R [ l  + ( d R / d ~ ) ~ ] " ~ '  
H =  

Condition (i) corresponds to fully developed flow in the upstream region, (ii) is the symmetry 
condition at the centreline, (iii) is the condition of zero deviatoric stresses far downstream, (iv) is 
the no-slip condition at the wall and (v) is the condition on the free surface characterized by zero 
shear stress, normal force balance and no penetration. 

In order to facilitate the numerical analysis, the physical co-ordinates z and r are transformed 
into the computational co-ordinates ( and q by means of the relationships 

This co-ordinate-stretching method is similar to the approach used for the orthogonal collocation 
method in Reference 24. The continuity and momentum equations may be transformed to the 
following expressions in the computational domain 
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where 

NUMERICAL ANALYSIS 

Grid and control volumes 

The computational domain is divided into control volumes and the grid points are placed in 
the geometric centre of each control volume. The pressure variable is located on the central grid 
point whereas the velocity variables are located on the faces of the control volume. This forms 
a staggered grid system since the control volume associated with the velocity is staggered with 
respect to the pressure control volume as shown in Figure 2. 

Conservation equation for the control volume 

volume. The final equations may be rearranged to the following form: 
The discretized equations are derived by integrating the governing equations over the control 

z-momentum 
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where 

Here the subscripts 1 and 2 refer to the control volume for the radial and axial momentum 
equations respectively. 

The continuity equation in its integrated form can be written as 

{ [ ( q R ) ' ~ r I n -  C(VR ) " ~ r l s ) N P  + { C(qR)"uzIe- C(qR)"uzI w 1 A q P  

This continuity equation plays an important role in relating the velocity terms to the pressure. 
The velocities may be corrected according to the constraint that the continuity equation must be 
satisfied at all times. The velocity correction equations can be derived in terms of pressure 
corrections by making use of the relationships 

p = p* + P', ur = u: + u:, u, = u: + u:, (23) 
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where superscripts ‘asterisk‘ and ‘prime’ denote the guessed and correction values respectively. 
Substituting (23) into the momentum equation and considering that the ‘asterisked’ terms satisfy 
the equation exactly gives 

The pressure correction equation is derived from the continuity equation in a similar fashion as 

where 

According to the SIMPLER scheme, similar equations to those above are used to calculate the 
pressure terms. These are derived from the continuity and momentum equations in an identical 
fashion. From the momentum equation the velocities on the faces are given by 
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etc. These expressions along with the continuity equation determine the discretized expression for 
the pressure as 

(28) a L h =  ui PE + PW + a; PN + a i P S  + B ~ I  
where 

The boundary conditions on the free surface can be formulated explicitly as 

These two equations are interchangeably used to eliminate the radial gradient term on the 
right-hand side of each equation, which then results in the following form for the boundary 
conditions: 

(32) 
aur R(dR/dr)j dor R(dR/dO2 ao, R -+ (P - P a  - H S  1 9  
-- 
aq - [1 +(dR/d1)’l2di+[1 +(dR/dl)’I’ a l  2p[1 +(dR/dl)2] 

The first terms on the right-hand side of these expressions are discretized and combined with the 
radial and axial momentum equations respectively to give the following discretized expressions 
on the free boundary control volume: 
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where a = AIE/ACP and b = 6(,/SlW. Again the continuity equation can be integrated on the free 
surface to give the discretized equation, and after some manipulation with equations (32) and (33), 
yields an expression for calculation of the pressure on the free surface: 

All derivatives which appear in the source terms and the equations developed above are 
discretized with second-order accuracy, O(A2). 

Solution procedure 

The computation procedure is given by the following sequence. 

1. 
2. 

3. 
4. 
5. 

6. 

Guess a velocity field. 
Compute the free boundary shape from the no-penetration boundary condition v * n = 0 by 
using Simpson's rule: 

Calculate the coefficients in the momentum and pressure equations. 
Compute the free boundary pressure and velocities from (34)-(36). 
Compute fir and 6, from expressions such as (27) by substituting values of the neighbouring 
velocities. 
Evaluate the mass source term Bp" from (29) and solve (28) to obtain the pressure field p. 
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7. Regarding the pressure field as p*,  the momentum equations (18) and (20) are solved to 
obtain v,* and vr. 

8. Calculate the mass source term bp” from (26) and solve (25) to obtain the pressure correction 
field p‘.  

9. Using the $-field, correct the ‘asterisked’ velocities by means of (23) and (24). The pressure 
is not corrected. 

10. Return to step 5 with the corrected velocity field and repeat the procedure until the inner 
domain variables converge within the tolerable error bound E =  

11. Return to step 4 to update the free boundary pressure and velocities and repeat until they 
converge within E = 10- ’. 

12. Once the field variables have been computed, return to step 2 so that the free surface shape 
is updated and the steps outlined above will be repeated until the surface shape converges 
within a tolerable error bound, which is set as ~ = 0 5  x lo-’. 

This problem is solved by the so-called ‘line-by-line technique’ and the resulting tridiagonal 
matrix is solved using the Thomas algorithm. The calculated fields are underrelaxed by a factor of 
0.2 and the free surface shape is underrelaxed by a factor of 0.4. The additive correction methods, 
which are described by Settari and and called the block correction procedure by 
P a t a ~ ~ k a r , ~ ~  are known to increase the speed of convergence of the line-by-line technique. In the 
simulation of extrudate swell, owing to the stress singularity at the die exit, the computed field of 
each variable is very sensitive to the computed field of the other variables from the previous 
iteration, so that the computation may proceed to a solution which does not satisfy the 
momentum balance and accordingly may give an irregular shape for the free surface. However, if 
the additive correction method is applied to the z-momentum and pressure correction equations, 
these anomalies can be eliminated. The inner loops of the z-momentum and pressure correction 
equations are cycled for six iterations each. Application of the additive correction approach to the 
third and sixth iteration is sufficient to overcome these difficulties and the computation converges 
in a desirable manner to give the free surface shape and the detailed flow field. 

RESULTS AND DISCUSSION 

In principle, the domain of interest for the extrudate swell problem must be infinite in extent in 
order to apply the theoretical boundary conditions far upstream and downstream of the die exit, 
However, previous numerical calculations by Nickel1 et aL4 and Dutta and Ryan3’ and experi- 
mental investigations by Gottlieb and Bird,36 Whipple and Hill3’ and Higashitani et 
indicate that the exit region lies approximately within distances of about half of the die opening 
both upstream and downstream from the exit plane. Accordingly, the computational domain is 
restricted to lie within = - 3 and = 3. This does not pose any problem when there are no gravity 
effects. However, with gravity, a sufficiently long downstream domain is needed in order to avoid 
a contradiction of the calculated pressure field as a result of applying the present boundary 
condition at a finite di~tance.’~ The computational domain is then discretized into an I x J 
non-uniform grid, I and J being the numbers of discrete nodes in c- and q-direction respectively. 

Effect of mesh refinement 

In order to evaluate the effectiveness of the numerical scheme, the Newtonian jet swell problem 
was first solved by neglecting the gravitational and surface tension effects. The computations were 
performed on three different meshes in order to select an optimum grid for further calculations. 
These meshes are illustrated in Figure 3 and the corresponding results in Table I show that as the 
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90 x 15(a) 

90 x 15(b) 

120 x 20(c) 

Figure 3. Meshes tested in the calculations 

Table I. Effect of mesh refinement on extrudate swell and the variables at 
the die lip ( S = O ,  G=O) 

Axisymmetric, a = 1 

90x 15 (a) 90x  15 (b) 120x20 (c) 

% swell 14-94 13-23 13.1 1 
P - 13.323 - 19'027 -21.739 
z,, - 6.964 - 9.935 - 11.501 

z,, - 11.626 - 15.738 -17.911 
T Z Z  19.760 28.103 32.112 

E 0.0234 0.0061 00026 
CPU time (min) 17 26 117 

Planar, a=O 

90x  15 (a) 90x  15 (b) 120x20 (c) 

% swell 21.35 19.16 19.14 
P - 12.073 - 17.028 - 19.475 
7,r - 6.365 - 8.925 - 10.277 
zzz 18.456 25.550 29,194 
zrz - 10-428 - 14.002 - 15.922 
E 00257 0.0022 0.0002 
CPU time (min) 16 48 81 
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grid size is refined, the extent of swell decreases to a value which is not affected by any further 
change in grid structure. However, the computational cost increases substantially as the number 
of grid points increases. On a VAX 8820 machine, grid type (b) requires 26 min of CPU time while 
type (c) requires 117 min of CPU time for the axisymmetric case. 

The mass must be conserved at any location along the flow. Since a fully developed velocity 
profile whose average is unity is assigned at the far upstream boundary, the mass flow rate across 
any cross-sectional area to the stream should be equal to that at the far upstream boundary. The 
error in the mass conservation is calculated by the equation 

E =  lAi (2nr)"u, dr - (27rr)"u, dr, I, (37) 

where Ai and Af are the cross-sectional areas of the upstream and downstream boundaries 
respectively. The values of E for each grid type are also shown in Table I. Here we can see that the 
more refined mesh satisfies continuity much better. According to these observations, grid type (b) 
was selected as the optimum grid and used in all calculations reported subsequently. 

Analysis of the stick-slip problem for axisymmetric dies 

The results of the extrudate swell problem are better understood by first analysing a stick-slip 
problem with respect to the stress singularity and the flow rearrangement which occurs near the 
exit plane. The boundary conditions for this problem are such that for (< 0 the no-slip condition 
is valid, whereas for [>O a zero-shear-stress condition is applied. The first successful attempt to 
analyse this problem was made by Richardsong* lo  for the planar stick-slip case. The axisym- 
metric stick-slip problem was analyzed by Trogdon and Joseph." Similar analyses have been 
reported by Coleman4' for second-order fluids and by Vrentas and D ~ d a . ~ '  They found that 
there is a square root singularity near the exit lip and the flow rearrangement is completed within 
a distance of about half of the die opening both upstream and downstream from the exit plane. 
Apart from the absence of a curved free surface, the stick-slip problem resembles the extrudate 
swell problem in many respects, particularly with regard to the stress singularities resulting from 
the presence of mixed boundary conditions.'. 10,42*43 The solution of the stick-slip problem is 
important in two major respects. Firstly, the validity of the numerical scheme can be effectively 
tested by comparison with analytical results. Secondly, the solution of the stick-slip problem 
serves as an excellent initial guess for the extrudate swell calculations. The numerical scheme 
developed here was tested by comparing the numerical results of the axisymmetric stick-slip case 
with the analytical solution given by Trogdon and Joseph." The velocity profiles given in Figures 
4 and 5 show excellent agreement with the analytical solution which is obtained by using up to 
100 terms in the series expansion. 

According to Richard~on,~ the surface velocity can be expressed in the form us = Azb, where 
A = 1.162 and b =0-50 for a slit die as z approaches zero. Also, Chang et a1.44 indicated that the 
integrated total axial stress on the die exit plane must be equal to zero, since at zero Reynolds 
number an integral momentum balance gives 

This integral balance can be used for partially checking the accuracy of the calculations. Since the 
planar and cylindrical stick-slip cases have been considered by several investigators, the results 
are compared between different solutions in Table 11. The present data for A and b were obtained 
by linear regression of the first five node point velocities from the die exit. The results are in 
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Figure 4. Axial velocity profiles for stickslip problem--comparison between present scheme and analytical solution, 
axisymmetric case, a= 1: 0, present scheme; -, analytical solution 
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Figure 5. Radial velocity profiles for stick-slip problem--comparison between present scheme and analytical solution, 
axisymmetric case, a= 1: 0, present scheme; -, analytical solution 
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Table 11. Comparison of stick-slip results 

Planar, u = 0 Axisymmetric, a = 1 

Chang et al.44 

Richardson’ 
exact solution 

A 1.162 
b 0.50 
I 0.0 
P O  0) 1.04 

e 0.135 
P W , S  0.8 1 

Collocation Galerkin 
3 x 10 3 x 9  

- - 
0.37 0.43 
O.ooo018 -0.206 
0.962 1.110 
0.844 0842 
0.141 0.140 

Dutta4’ 
FDM 

1.170 
0.466 

-00115 
14302 
0792 
0.132 

Present 
work 

1.120 
0.436 

-0.0158 
1.100 
1.081 
0.180 

D ~ t t a ~ ~  
FDM 

1.243 
0436 
00003 
2.24 
1.38 
01725 

Present 
work 

1-233 
0414 

-0.0041 
230 
1.97 
0246 

reasonably good agreement with those obtained using different solution techniques. The data for 
the integral balance are small enough to ensure the accuracy of the present numerical scheme. 

The term p w , s  denotes the wall pressure extrapolated from upstream to the die exit. The 
quantity e =pW,J25, is the equivalent length of the exit pressure losses. The present scheme shows 
somewhat higher values for this equivalent length than the other solutions. 

Figures 6(a) and 6(b) give the pressure profiles along the symmetric axis and the stick-slip 
surface for the cylindrical and planar cases respectively. The axial pressure gradient along the 
centreline decreases monotonically from the Poiseuille value of - 8 or - 3 (for a = 1 or 0) to zero 
as the fluid traverses through the exit region. The surface pressure, on the other hand, shows 
a negative value at the die exit and asymptotically approaches zero far downstream. This 
behaviour at the exit is predicted to be a square root singularity from the analytical solution. In 
addition, the results agree reasonably well with values previously reported by other authors, 
except in the immediate vicinity of the die exit where Chang et al.3 data show a pulse to a higher 
positive value and then a drop to a negative value. This pulse in the wall pressure at the die exit is 
commonly detected in finite element calculations. In this work, however, it was not detected by 
the present scheme since zero radial pressure gradient is applied on the wall because of the known 
velocity boundary condition. D ~ t t a ’ s ~ ~  finite difference scheme also did not show the pulse at the 
exit. 

For the axisymmetric case the results for the velocity, pressure and stress fields are given in 
Figures 7(a)-7(e). In Figure 7(a) it can be seen that the rapid rearrangement of the flow regime is 
essentially confined to lie within half of the die opening both upstream and downstream from the 
exit plane. Figures 7(b)-7(e) show the pressure and stress singularities at the die exit. The radial 
stress exhibits only a compressive force at the exit, whereas the axial stress exhibits both a highly 
tensile force at the exit lip and a compressive force near the centreline of the exit plane. This is 
a result of the fact that the total axial load is zero when the Reynolds number is zero, as indicated 
by Chang et ~ 1 . ~ ~  The shear stress at the wall far inside the tube is - 4, which is the same as that 
predicted by the swell calculations of Nickell et aL4 and Dutta and Ryan.j3 

Jet swell without gravity and surface tension 

Figure 8 shows the free jet profile for a cylindrical jet in the absence of surface tension and 
gravity. A swelling ratio of 13.23% is predicted by the present numerical scheme for the 
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Figure 6(a). Pressure protiles for stickslip problem, axisymmetric case, a= 1 
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Figure 6(b). Pressure profiles for stickslip problem, planar case, a=O 

axisymmetric jet, which is in reasonably close agreement with the available experimental obser- 
vations and other previous numerical predictions. The experimental measurements of Batchelor 
et aL3 ahd Nickel1 et al." give a swelling ratio of about 13.5% and the numerical results available 
from the literature range from 12%,33 12-6%,2s 12*8%4 and up to 13-0%.17 The surface profiles 
for a plane jet are illustrated in Figure 9. The planar case has a swelling ratio of 19.6% and is 



' 1.5 
0.5 

g 0.0 
-3 -2  -1 0 1 2 3 

(4 
1.5 

z l m O  
0.5 

rd g 0.0 

-3 -2 -1 0 1 2 3 

1.5 

z 4 0.5 
0.0 6 

-3 

' 1.5 

(d p: 0.0 
-3 

; 0.0 
-3 

A x i a l  distance, 
(b) 

-2 -1 0 1 
(4 

-2 -1 0 1 

A x i a l  distance, 
(dl 

-2 -1 0 1 

z 

2 3 

2 3 
Z 

2 3 
A x i a l  distance, z 

(4 

Figure 7. Contour plots for stick-slip problem, axisymmetric case, a= 1: (a) velocity; (b) pressure; (c) radial extra stress r,,; 
(d) axial extra stress r,,; (e) shear stress r,= 
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Figure 8. Comparison between numerical and experimental surface profiles for cylindrical jets, S= 0, G =O. Numerical 
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Figure 9. Comparison between numerical and experimental surface profiles for plane jets, S=O, G=O. Numerical 
-,present work; 0, Chang et ai.?" Galerkin, 3 x 9 elements; 0, Omodei;17 0, Crochet and Ke~nings;'~ V, Dutta and 

Ryan.j3 Experimental: Q, Whipple and Hill" for silicone oil, Re = 3.5 x 
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considered to be in reasonable agreement with the experiments of Whipple and Hill3’ and the 
previous numerical predictions of 1610%,33 16-58%,24 18-8%,25 19.0% and 196%.” The flow 
and stress fields are plotted inFigures lO(a)-lO(e). It can be seen that the pressure and axial stress 
singularities are more severe than in the stick-slip case. It is interesting to note, however, that the 
radial stress is alleviated in compressive force, whereas a small tensile force appears near the 
centreline in contrast to the stick-slip problem. For a plane’jet the qualitative aspects of the flow 
field were found to be almost identical to those for the axisymmetric case and hence will not be 
discussed in detail here. 

In Figure 11 the effect of shear thinning is shown to reduce the degree of swelling, which is in 
agreement with the calculations of Tanner et a1.,13 Boger et ~ 1 . : ~  Mitsoulis et aL19 

and McClelland and Finlay~on.~’ As mentioned by Mitsoulis et a1.,19 there exists a small 
contraction immediately after the exit for highly shear-thinning fluids (n = 0.2). 

Efect of gravity 

The influence of a gravitational field on the jet shape has been discussed by Dutta and Ryan,33 
who also used a finite difference numerical technique. The influence of a gravitational body force 
has been measured experimentally by Adachi and Y~shioka.~’ The final shape of the jet is a result 
of a dynamic balance between the competing influences of viscous and gravitational forces. 
Figure 12 shows the calculation results from the present work as compared with the previously 
mentioned studies. The numerical calculations of Dutta and Ryan show a large discrepancy with 
the data reported by Adachi and Yoshioka, whereas the present calculations are in much closer 
agreement. The discrepancy between the experiments and the calculational results arises from the 
imposition of an inadequate boundary condition far downstream. As discussed by Fischer et 
the overall length of the jet affects the velocity field and the final shape of the jet. The uniform 
axial velocity and zero-vorticity or zero-stress conditions far downstream result in a linear 
increase of pressure in the flow direction which is in contradiction with the uniform zero-pressure 
condition in the absence of surface tension and ambient pressure.39 Therefore the jet length must 
be sufficiently long in order to apply the present boundary conditions, or alternatively the 
boundary conditions suggested by Adachi5’ have to be applied at a finite distance. 

Efect of surface tension 

Figure 13 shows the effect of surface tension on the shape of a capillary jet for different values of 
the surface tension parameter S, which is a measure of the ratio of surface tension to viscous 
forces. As with other previous numerical  prediction^,'^ - 33 surface tension inhibits jet swell 
owing to the inherent inward normal force on the free surface. 

CONCLUSIONS 

The results demonstrate the capability of employing a finite difference numerical method for 
solving the free surface extrudate swell problem by direct solution of the continuity and Cauchy 
momentum equations using velocity and pressure as the primitive variables. The method has 
been successfully applied to Newtonian and power-law fluid jets without any difficulty in 
accommodating the free surface by employing a staggered control volume grid. The finite 
difference technique involving co-ordinate transformation is able to approach the boundary 
generality of the finite element method. Although the application of the boundary conditions and 
the derivation and manipulation of the co-ordinate transformation are inherent disadvantages of 
the finite difference approach as compared to the use of finite elements for free surface problems, 
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Figure 10. Contour plots for the Newtonian extrudate swell, axisymmetric case, a = 1: (a) velocity; (b) pressure; (c) radial 
extra stress (d) axial extra stress T = ~ ;  (e) shear stress T,, 



1308 Y.-C. AHN AND M. E. RYAN 

1.15 
N 
v 
I22 

- 1.10 
a, 
0 
Ld 
+I 

k 1.05 
2 m 
a, 
a, 1.00 

1 k 
k ! 

0.95 
0.0 1 .o 2.0 3.0 

Axial distance,  z 

Figure 11. Free surface profiles for power-law fluids, axisymmetric case, a= 1 
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Figure 12. Comparison of the effect of gravity between present work and the experimental data of Adachi and 
Yo~h ioka?~  axisymmetric case, a = 1 

the additional effort and complexity involved are not very demanding. The finite difference 
approach has some positive benefit with regard to the relative ease of mesh refinement. The 
computational efficiency of the present line-by-line overrelaxation scheme could be improved by 
implementing an efficient matrix inversion method and solving over the entire domain. 
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Figure 13. Effect of surface tension on a capillary jet, a = 1 

0 

Even though finite element methods are almost exclusively employed for the solution of free 
surface fluid mechanics problems and attention to finite difference procedures has been virtually 
abandoned, the present study indicates that finite difference methods can be employed without 
formidable difficulty or complexity and that the method approaches the boundary generality of 
the finite element method. 
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